2 00 1 An intrinsic characterization of p - symmetric Heegaard splittings ∗

نویسنده

  • Michele Mulazzani
چکیده

We show that every p-fold strictly-cyclic branched covering of a b-bridge link in S 3 admits a p-symmetric Heegaard splitting of genus g = (b−1)(p−1). This gives a complete converse to a result of Birman and Hilden, and gives an intrinsic characterization of p-symmetric Hee-gaard splittings as p-fold strictly-cyclic branched coverings of links.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 2 An intrinsic characterization of p - symmetric Heegaard splittings ∗

We show that every p-fold strictly-cyclic branched covering of a b-bridge link in S 3 admits a p-symmetric Heegaard splitting of genus g = (b−1)(p−1). This gives a complete converse to a result of Birman and Hilden, and gives an intrinsic characterization of p-symmetric Hee-gaard splittings as p-fold strictly-cyclic branched coverings of links.

متن کامل

An Intrinsic Characterization of P-symmetric Heegaard Splittings *

We show that every p-fold strictly-cyclic branched covering of a b-bridge link in S 3 admits a p-symmetric Heegaard splitting of genus g = (b − 1)(p − 1). This gives a complete converse to a result of Bir-man and Hilden, and gives an intrinsic characterization of p-symmetric Heegaard splittings as p-fold strictly-cyclic branched coverings of links.

متن کامل

Genus Two Heegaard Splittings of Orientable Three-manifolds Hyam Rubinstein and Martin Scharlemann

Contents 1. Introduction 2 2. Cabling handlebodies 3 3. Seifert examples of multiple Heegaard splittings 6 4. Other examples of multiple Heegaard splittings 8 4.1. Cablings 9 4.2. Double cablings 10 4.3. Non-separating tori 11 4.4. K 4 examples 13 5. Essential annuli in genus two handlebodies 16 6. Canonical tori in Heegaard genus two manifolds 20 7. Longitudes in genus 2 handlebodies – some te...

متن کامل

Scharlemann-Thompson untelescoping of Heegaard splittings is finer than Casson-Gordon’s

Let H1∪P H2 be a Heegaard splitting of a closed 3-manifoldM , i.e., Hi (i = 1, 2) is a handlebody in M such that H1 ∪H2 = M , H1 ∩H2 = ∂H1 = ∂H2 = P . In [13], M.Scharlemann, and A.Thompson had introduced a process for spreading H1 ∪P H2 into a “thinner” presentation. The idea was polished to show that if the original Heegaard splitting is irreducible, then we can spread it into a series (A1 ∪P...

متن کامل

S ep 2 00 5 HEEGAARD SPLITTINGS , THE VIRTUALLY HAKEN CONJECTURE AND PROPERTY ( τ ) MARC LACKENBY

The behaviour of finite covers of 3-manifolds is a very important, but poorly understood, topic. There are three, increasingly strong, conjectures in the field that have remained open for over twenty years – the virtually Haken conjecture, the positive virtual b 1 conjecture and the virtually fibred conjecture. Any of these would have profound ramifications for 3-manifold theory. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008